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This paper develope uniform approximate solutions to systems of nonlinear dif-
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In the process of deriving the approximations an existence theorem is generated for
solutions of nonlinear equations. Also, an algorithm is provided for computing
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1. INTRODUCTION

Consider the boundary value problem

y' = Ey+1(s,y), te [0, 1],

(1.1)

My(0)+ Ny(z)=bh,

where E, M, and N are constant real n x n matrices such that £”=0 and
the n x 2n matrix (M, N) has rank n. b is a constant real » x 1 vector and
f(z, y) is continuous on [0, 1] x R" with values in R", where R will denote
the set of real numbers. The purpose of this paper is to examine vector
polynomial approximations to a solution of (1.1) with respect to a uniform
type norm. The paper is mainly intended to extend the work of [3],
although many other papers have recently appeared in closely related
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areas. Among those that most influenced this paper are {2, 87 in linear
boundary value probiems and [1, 7] in nonlinear initial value problems.
The uniform type norms to be used are as follows:
For f=(f,, /... f,)%, where f,€ C[0, 1], define

If(2)] = max |f; ()|

1<ign
and

It} = max [f(z)].

te[0.1]

For scalar functions | gl =max, o .5/8(2)l, where ge C[0,]. Also, if
B(t)=(b;(t)) is an nxn matrix, whose components are piecewise con-
tinuous on [0, 7], then define

I(I—maxylb 3

1<,<nl.=
and

I1Bll = sup |B(z)].

te [0.17]

Throughout this paper we will use the symbol F[y](fj to represent

f(r, y). It will also be assumed that the system
y'=Ey ,
_ (1.2}
My(0)+ Ny(t)=0

is incompatible. This implies that therc exists a unique Green’s matrix
G(t, s) (see [5]) such that the unique solution y to the boundary value
probiem

x'=Ex+g(t)
Mx(0)+ Nx{(tj=Dh

can be written as

y(t) = Y1) D*1b+J" G(t. 5) g(s) ds,
0

where Y(7) is an »xn matrix whose columns are # linearly independent
solutions of y’ = Ey such that Y(0)=1, I is the nx » identity matrix, and

D=MY(O)+ NY(1).
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It is well known (see [5]) that the system (1.2) is incompatible if and only
if the matrix D is nonsingular.
The ideal situation is to find a sequence {p,} such that
inf |[p'—Ep—F[plll = lIpi — Ep — Flpidl, (14)
pe Py
where P, = {p:p=(p,, Ps»-s D), Where p; is a polynomial of degree k or
less and Mp(0) + Np(z)=b}. If f(z, y)=F[y](¢) is linear in y and (1.1) has
a unique solution this sequence can always be found (see [2]). If F[y] is
not linear in y such a sequence may not exist or possibly be very difficult to
compute. We will use a different approach to finding an appropriate
sequence of vector polynomials to approximate a solution of (1.1),
although in some cases the method does produce a vector polynomial
which satisfies (1.4) for a given k. This method will produce a sequence of
polynomials which are fairly easy to compute and provide a good
estimation to a solution of (1.1). The method parallels that used in [3, 7]
for scalar equations.

2. APPROXIMATING VECTOR POLYNOMIALS

Before developing our sequence of vector polynomials some definitions
must be presented. Let h(z) = Y(¢) D~'b. Since E" =0, the components of h
are polynomials of degree # — 1 or less. Also, h has the property that

h'=FEh

(2.1)
Mh(0)+ Nh(c)=b.

An important restriction on (l.1) is that there exists a function
(1) e C[O, t], with ¢(¢) >0 for all te [0, t], and a positive real number
such that

J, 16 i) ds <1 (22)

and |F[y](2)} <é(¢) r for |ly—h|| <r and re [0, 7].
Now define the following sets:

Q.= {p:p is a polynomial of degree k or less},
We={p:p=(p1, P2 P.)’, where p,eQ, for 1 <i<n},
P.={p:pe W, and Mp(0)+ Np(t)=b},
Vi={p:peQ, and |p(t)] <4(t) r for all re[0, ]},
Ue={p:p=(p1, P2r Pn)T, Where p,e V, for 1<i<n},



RESTRICTED RANGE APPROXIMATE SCLUTIONS 29

and
Si={p:pe P and |p—h|<r}

It should be noted that he S, for all k =n—1.

We may now proceed to define our sequence of vector polynomials. Let
peS, for a fixed k=n+1. Since |p—h|<r, it follows that
[F[p1(7)] <é(t) r. Therefore |F,[pl(z)l <¢(t)r for each 1<i<n, where
F[pl=(F,[p), F,[pl,- F,[p])". Then using Theorems 3.1 and 4.1 from
[97, for each 1 <i<n, there exists a unique v, ¥, _, such that

inf fo—F,[p]ll = o, — £ Ip]ll- (2.3)
ve Vi_p
Let vo=(v,, vs,.., ,,)* and define the operator B,: S, —» U, _, by B,p=+¥,.
Since F[y] is uniformly continuous on compact sets, Theorem 4.4 of [9]
implies that B, is a continuous operator. For the same fixed k= n+ 1 let
ve U, _, and set

q(z)=h(1)+ J: G(t, s) v(s) ds.

Define the operator H, by H,v=gq. Using the properties of the Green’s
matrix it can be shown that H, is a continuous operator from U, _, into
P,. Finally, define the operator 7,: S, - P, by T, p= H {B,p). Since 7, is
the composition of continuous operators, T is continuous. If p, is a fixed
point of 7, i.e. T, p,= Py, then

p,\,=h(t)+fr Glt, 5) vy, () ds, (2.4)
0
Where Vi, =(Ux 1) Uk - pases g —np)’ with
inf o~ F;[p I = llvg_ i — F:[pe 1 (2.5)
veVion

Therefore

inf [v—FLp ]l =lvi ,—FLpc]l

velly .y,

and from (2.4)

s
)
o

inf [lv—F[p ]l = llpk — Ep, — Fpc]l-

velyk_y

Our approximating polynomials are then the fixed points of 7, for each
kzn+l.
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3. EXISTENCE OF FIXED POINTS

The first step is to establish the existence of fixed points of T, for each
kzn+1.
THEOREM Y. For fixed k =n+ | the operator T, has a fixed point p,.

Proof. To prove this theorem we will use Schauder’s Fixed Point
Theorem (see [6]). It is already known that T, is a continuous map from a
compact convex subset S, of the Banach space W, into P, < W,. Therefore
we need only show that T,(S;) = S,.

Let pe Si. If vo= Byp, where vy = (vy,..., v,)7, then |v,(¢)] < é(r) r for all
re[0,7] and 1 <i<n Therefore |vo(2)] <¢(z)r for all 1[0, t]. Define
q=T,p. Then

a()=h(1)+ [ G(t,5) vols) s
0
This implies that g e P, and

9 =B < [ 160 )1 Ivo(s)] ds

<r [11GC 9)g(s) ds
<7

for all 1€ [0, t]. Therefore |jq—h| <, which completes our proof.

4. CONVERGENCE OF FIXED POINTS

We should now determine a relationship between our sequence of fixed
points of T, and a solution of (1.1). We will prove, under certain con-
ditions, that if p, is a fixed point of T for each k=n+1 then p,—>y
uniformly as & — o0, where y is a solution of (1.1). Also p, — y’ uniformly
on [0, ]. In order to establish these results we will need the following
lemma:

LemmA 1. For each kzn+1 let p.e S, be a fixed point of T,. Let

e (1) =pi(t)— Ep (1)~ F[p (1),  1€[0,7]; (4.1)

then lim, _,  [le.l =0.
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Proof. Let v, ,=pp—Ep, for each k=n+1 and denote the com-
ponents of v, _, by v;,_,. where 1 <i< n. Since p, is a fixed point of 7, we
have that

inf v —F[pe = Moo — FLpe ]l (4.2}
UVE Vi _p
for each 1 <i<gn.

Further, for each 1 <i<n, there exists gq,, _,€ 0, _, such that

inf “U_Fi [pA]“ = H qi.k—n _Fl [pk]“ {43:’

vedi—n

From Jackson's theorem (see [4]), if é,,=q,, ,— F;[p.] then |é, ]| <
Wi {atk —n)), 1<i<n k=n+ 1, for some constant «. independent of &,
where w,, is the modulus of continuity of F,[p,] for each i and k.

For each k= n+ 1 we have that v, ()] <2|¢llr and |p.(#)| <5+ ||h]j
for all 1€ [0, 7]. Therefore |p, (2} < E|[r+ |[h{|]+ 2] @] r for all re [0, r].
Then using the mean value theorem we can conclude that the sequence
{pi}i_, ., is uniformly bounded and equicontinuous on [0, t].

Given ¢>0 such that ¢{()r—e>0 for all r¢e[0, 1], set
A=¢/[2(e+rl|¢|)]. Since each F,[y](r) is uniformly continuous on com-
pact sets and the sequence {p,} is uniformly bounded and equicontinuous
there exist positive numbers ;, 1 <i<n, such that

|F [peJ(1) — F,[pe J(s) < LAH(T = 2)] &2 (4.4)

whenever |1-—s|<3d;, 1, 5€[0,7], for each k=n+1. This implies that
0, 0)<[4/(1 —2)] €2, 1<i<n independent of k. Let K, zn+1 be
large enough so that «/(k —n)<min {§;] for k > K,. Therefore

€l < [A/(L—A4)]e/2 (4.5)

for each 1 <i<nand k=K.
Define g(z) = ¢(r)r —¢ and for each k= n + 1 let 5, _, (7} be a polynomiai
of degree k& — n or less such that

inf flo—gl=ls_,—gl {4.6)

vELk—n

There exists a number K, 2 n+ 1 such that ||s,_,—¢gll <¢&?2 forall k> X,.
Let K=max {K,, K, }.
For each k> K and 1 <i< n define

bi,kfn(tj:isk—n(t)_*_(l_;“)qi,kf-ni\l)‘
Then 6,, _,€0Q,_, foreach k=K and 1 <i<n and

20 r —&) = la)r <byi (1)< d(t)r

640 47 1-3
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for all te[0,t]. This implies that |b,,_,(¢)| <¢(z)r for all 1e[0, 1],
1 <i<n, and k= K. Therefore b, _,eV,_,for1<i<nand k=K
We also have, for te[0,7], 1 <i<n, and k> K, that

|bise—n (1) = Fi [P J(1)]
S A () = E [P (] + (1 = )| gipe - (1) = Fi [P ] ()]
<Ae2+ALlp(0)r = Fi[pJ (1) + 6]+ (L = )[A/(1 = 4)] &2
<de+AL2r|g] +e]=2A(c +rlgl) =

Therefore, (|6, ,—F;[pi]ll <eforall k=K, 1 <i<n. Since b, _,eV,_,,
k=K, 1<i<n, then

0l o= FilPedl < bie_— Filpe ]l <e

for each 1<i<n and k> K. This implies that |v,_,—F[p,]l <e for all
k= K and the proof is complete.
With Lemma | we can now establish the main results of this paper.

THEOREM 2. If pi€ S, is a fixed point of T, for each k =n+ 1 then there
exists a function y, whose components are in C'[0, 1], and a subsequence

Pty of {Pe}ie, oy such that lim;_ |(py ;)" —y"“I =0, i=0, L
Moreover y is a solution to (1.1).

Proof. 1In the proof of Lemma 1 it was established that the sequence
{pi}, . is equicontinuous and uniformly bounded on [0, t]. By Ascoli’s
theorem there is a subsequence {py;,}2 such that p, ;) —y uniformly on
[0,z] for some y whose components are in C[0,7t]. If
€, =pi— Ep, — F[p,] then from Lemma 1 p;;, » Ey + F[y] uniformly on
[0, t] as j— oo. Since py; is a fixed point of T,

Py (1) =h(0)+ [ Gt 5) B () — Epiy ()] s

and thus yeC'[0,7] is a solution to (1.1). We then get, since
y' = Ey + F[y], that p,,, —y' uniformly on [0, t] as j — oo and our proof
is complete.

5. RATE oF CONVERGENCE
We will now investigate the rate of convergence of a sequence of fixed

points developed in Section 2. Here it will be assumed that we have a
sequence of fixed points {p,} and a solution, y, of (1.1). Also, in addition
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to the conditions already placed on f we will assume that there exists a
positive number K such that

(2, x,) — (2, x,)| < K[ x; — x| (5.1)

for all te[0,7] and |h—x,| <r, i=1,2. In addition let ¢ be a number
such that '

NG, s)| ds<c. (5.2)
Y0

THEOREM 3. If Kc < 1, then there is a constant f, independent of k, such
that

Ip? =yl <Bled, =01
where e, =p, — Ep, — F[p,].

Proof. Since y is a solution to (1.1) and p, is a fixed point of 7, we
have

Y(O)=h(0) + | Gt.9) FIy](s) ds
and
(1) =h(0)+ | Gt )IPi(s)— Epy )] ds

for each k. Here, recall, F[y](r) =f(t, y). Therefore

P —yll <clleell + Kelp,—yll.

This implies that

Ipe —¥I < Le/(1 — Ke)Tllexll. (5.3}

We also have that

Ipe —¥'ll < llecl + LILEN + K11l pe— ¥l
<[+l EN)/(L— Ke) Tilexl. (54)

This, then, implies our result.

Two consequences of Theorem 3 should be discussed. First, combining
Lemma 1, Theorem 2, and Theorem 3 we get the existence of a solution to
(1.1) and the convergence of the entire sequence {p,} of fixed points to
that solution. Second, it can be easily shown that the conditions of
Theorem 3 guarantee that (1.1) has a unique solution.
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6. COMPUTATION OF FIXED POINTS

We now turn to the task of computing a fixed point of T,. Let p, be any
element of S, for a fixed k>n+ 1 (this may be taken to be h). Define
Powir= TP, for m=0,1,2,... Weknow that p, e S, for each m > 0. Since
Sy is compact the sequence {p,} has a cluster point peS,. Therefore,
there exists a subsequence {p,;}<, such that p,,,—p uniformly on
[0, ] as j— o0. We now proceed to show that p is a fixed point of 7.

Let V,, =Pl 41— EPmyy for each m>0. Then v,,= (V| ey U,) ', Where

qu “U— Fl[pm]H = ”Ui,m—Fi [pm]“ (61)

veE Vi_p

for m=0, L <i<n It will be assumed that, for each i, F;[p] is not con-
tained in @, when p is contained in W,. This will imply that
1¥i — Fi[Pm 1l #0 for m>0, 1 <i<n Define the following sets for each
m=0and 1 <i<m

Yir = {1e [0, 73 Filpn () = vim () = I FiTP] — 00l },
vir = {1e [0, 1] Fi[pm](1) =0 (1) = = I Fi[Pr] =000l }5
Yir ={1e[0, 1] v, (1) = —g(1)r},
Yim ={re[0,1]: v, (1) =¢(t)r}

and

Yim= Yo Yo Yo Y.
Since |F,[p,,1(¢)| <¢(z)r for all 1el0,7], 1<i<n, and m>=0, we have
that

(YY) n (Yo Yn) =g (6.2)

for each 1 <i<n and m>0. Then define 5,,, ()= —1if te Y, U Y™, and
im(t)=+1if te Y\ O YY" for each 1 <i<n and m=0.

From Theorem 3.2 of [9], there exist k—n+2 consecutive points
Poim <taim< ' <lg_pi2:m in Y™ satisfying

O-i.m(tl,i,m)z (_1)l+1o-i,m(t1,i,m) (63)

foreach 1<i<nm=0,and 1 </<k—n+2. Foreachl<i<nand m=>=0
let X,,,= {t1imoe>tk_nsaimy- The sequence {X,,,}2_, is contained in the
compact set [0, t]%"*2 for each 1<i<n Therefore they have cluster
points X, = {t, ;e, {x _ 4241, 1 <i<n Without loss of generality, assume
that all subsequences from {p,} and {X,,} that converge to p and X,
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1 <i<n, involve the same indices. These subsequences will be denoted by
Py )21 and {Xi,mcj;}jila I<isn. /

Let em([) = vm(t) - F[pm]([) = p;n+ 1 (t) - Epm+ 1 (t) - F[pm](‘;) for each
m=0. Denote the components of e,, by e;,,, 1 <i<n. Also define u(¢)=
p'(:)— Ep(r) and e(t) =u(z) — F[p](z) with the components of e given by ¢,,
I <ign.

Turorem 4. If for each t,;, t,,;€X;, 1<i<n, I<I<k—n+1, we
have
sgn [e;(1,;)] = —sgn [e;(1,, )], (6.4}
then p is a fixed point of T.

Proof. Define q=T,p, v=q¢ —Eq and d=v—F[p] with the com-
ponents of d denoted by d;,, 1 <i<<n Also for cach | <i<# define the
following sets:

v ={te[0,t]: F;[pl(#) —v{t) =1 F;[p]—vi }.
Yo ={te[0, ] Fi[pl(1) —v;(1) = —|F;[p]—vil },
Yi o= {te[0,t]:v(0)=—g(r)r},

Yi ,={te[0, 1] v,(1)=¢(t) v}

and
Y, =Y _ vY_ uY ,uY ,.

Again, we have that
(Y oY ,)n(Yo uY ))=0 (6.5)

foreach 1 <i<n Thendefine o,(7r)=—1ifre Y ,u¥ ,ando;{t})=+11if
teY ,uY., 1<i<n Using Theorem 4.4 of [9] and the fact that the
family {F[p,,]} is equicontinuous on [0, t] we have that e, ;,(?/ m;) =
d(1;;)asj— oo, foreach 1 <I<k—n+2and 1 <i<n Also, |le, 5l — lld,]
for each 1<i<mn, as j— oc. This gives us the following relationships as
Joocr YU YL YO S ¥ Yt s Y YR S5 ¥, and
Yy — ¥ for each 1 <i<n. Therefore

o (t,)=(-1)"a,(t,)), 1<I<k—n+2, (6.6}

for each 1 <ign.
We have that for each 1<i<nand 1</I<k—n+2,

~1
S

() —v,(t,)=d;(t,,)—e(1,,). {6.
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Also, using (6.4) and Theorem 4.2 of [9] we have
1F:[p]—vll Z1F[p)(1,,) —ui(r)l,  1<i<k—n+2,  (68)

for each 1<i<n Then using (6.7) and (6.8) we can conclude that
uty)—oi(1,)=20 i r,eY oY, and  u(r,)—v(1,)<0  if
t €Y (Y. ,, 1<I<k—n+2, 1<i<n. Therefore, from (6.6), it follows
that for each 1 <i<n, u,(t)—uv,(¢) has k—nr+1 zeros in [0, t]. Since u;
and v, are polynomials of degree k—n or less for each 1<i<n, then
u;(t)=v,(1) for each 1 <i<n. Thus u(r)=v(z), which completes the proof.

It should be noted that if the sequence {p,,}<_, is such that p,,—p
uniformly as m — oo then (6.4) is always satisfied.

7. ScALAR EQUATIONS AND THE BEST APPROXIMATION

Consider the system

YO =1, P 1), 1e[0, 1],

n (7.1)
Y ey 0)+dyyV TV (e) =b,, 1<ign,
j=1

where f is a continuous real valued scalar function on [0, 1] x R"” and
¢;» dy, and b, are real constants for 1<i<n, 1<j<n. Using standard
techniques this system may be transformed to the form (1.1), where
Yy={(p, ¥y, 3"~ N, Therefore all of the theory of the preceding sections
applies to (7.1) transformed to (I.l). However, additional things may be
said about (7.1).

First, let E,={p:peQ and X7_, cyp{{y " +d;pii V=5, 1<i<n}.
Then the best approximation from E,, for a given k, is a polynomial ¢,
satisfying

qiggk g™ —f( s goes ¢ DN =@ = f (-, Gress g~ (7:2)
If we modify all of our sets in Section2 by replacing the vectors
(P1s Pases Pn)T With (p, s p"~1)T and name the sets W,, B,, U,, and
Si, then finding a polynomial g, which satisfies (7.2) is equivalent to
finding a vector polynomial q, = (g, gk, g ") which satisfies

qinlg la'— Eq—F[q]l = |9 — Eq, — F[q, ], (7.3)
€ Py

where F[y](f)=1£(z, y). Then in light of Theorem 4.3 of [9] we can apply
the same type of analysis as that applied in [3] to find a vector polynomial
q, satisfying (7.3). (We would use the fact that if p= (p, p'...., p”* V)" then

Ip'—Ep—FIplll=p"—1(, P "))
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In converting system (7.1) into (1.1) and checking the condition given in
{2.2), we may be losing some examples. Using the method in [3] for
scalars and that of this paper we can include scalar equations that would
have been eliminat~d in the conversion process. Thus condition (2.2) would
become :

|1 )1y ds <1 (7.4)

and

| I sts) ds< L (1.5)

etc., where H(z, s) is the Green’s function for the problem

¥ =0
n {7.6)
Y ey 0)+dyyY () =0, i<ign

J=1

This can be found by computing the Green’s matrix G(¢, s) and then letting
H{(t,5)=d7 G(t, 5)d,, where d, = (1, 0,0,...,0)" and d,=(0,0..., 0, 1}".
Finally, if we simplify the boundary conditions in (7.1) to
¥(0)=b,, v(z)=b,, there are many other theorems we can prove using the
technique of this paper. One simple problem is as follows: Consider

y(ty=£(t,»). te[0, ],

, (.7)
»(O0)=by,y(r)=0b-.

Here, our Green’s function H(z, s} is nonpositive for all s, re [0, t]. If we
let A(t)=[(b,—b,)/t] t+ b, then our condition would be that there is a
positive function ¢(z) on [0, 7] such that

—r H(t, s) d(s) ds < 1 (7.8)

0

for all re[0, t]. Also, there exists an r>0 such that 0<f(s, y)<¢(s)r
when || 3 — k|| <r and p(f) < h(z) for all te [0, t]. With these conditions we
can follow the procedure of this paper and produce the theorems needed.

8. EXAMPLES

In this section four examples are presented. In each case the algorithm
introduced in Section 6 was used to produce a fixed point. Each of the four
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examples is a scalar system of the form (7.1) with f(¢, y,..., ) =a(r) y™,
where m is a positive real number and a(z)#0 for all 1€ [0, t]. Also, we
will assume t=1. In this case the corresponding scalar conditions,
described in Section 7, which will insure the existence of a fixed point
become: There exists a function g€ < [0, 1], with ¢(z) >0 for all e [0, 1],
and a real number r such that

[ 1HC 916 ds<t

and |a(t)[y(1)]"| < @(t)r for ||y—h| <r, te[0,1]. Here, H(t, s) is the
Green’s function described in Section 7. If we let

1
A= , .
§o IIH(-, $)Il la(s)] ds

and ¢(t) = Ala(t)| then a condition which would insure the existence of a
fixed point is given by: There exists a real number r such that

[+ A0

I3

A (8.1)

This condition can be checked numerically on the computor.

In order to calculate these fixed points it was necessary to calculate a
best restricted approximation and thus the algorithm developed by G. D.
Taylor and M. J. Winter [ 10] was used for this purpose.

ExampLE 1.
¥y +6y*=0, te[0,1],
y(0)=3, Yy (0)=—-45 y)=1i
Here, |H( ", s)|| =s(1—5)*/2(2—s), where se[0,1]. Thus A=1/(—4+
61n2) and ||A| =1. Therefore, we can take r=0.0109 in order to satisfy
(8.1). Also, K=3(2r+1)> and C= —3+In2. This gives us that
KC <0.085<1, which implies that the conditions of Theorem 3 are

satisfied (making the appropriate changes for scalar equations). A fixed
point of 77 is

P,(1)=0.5—0.25¢ + 0.1253274612 — 0.062495147>

+0.03114968:* — 0.01510905¢° + 0.00648877:°
—0.00202841¢".
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A fixed point of Ty is
Pg(t)=0.5—0.25¢ + 0.124869997* — 0.06249929¢°

+0.03123048:* — 0.01547963° + 0.00733774:°
—0.00299848¢" + 0.000872487".

The actual solution is p(¢)=1/(z + 2) and the uniform errors are
[P;—yll=1.5x10"%
1P;—y'=19x1073
[Py—y"l=17x1072,

[Py —y"| =11x107"
[Ps— |l =65%x10"7,
|Ps—y'[| =89 %104,
[Py —y"]| =89x107,
and

1Py —3"" | =64 %1072

EXAMPLE 2.
2,
¥ =[—+—1y~’, te [0, 1],
y¥0)=1, W)y =3
In this case ||[H(", s)|| =s(1 —s), where se€[0, 1], and |jh| = 1. Therefore
A=1/(3—41n 2) and thus any r between 0.537763 and 1.859557 will satisfy

(8.1). However, K=4(1+r) and C=¢£, which implies that KC=
£(1+4ry>1.025. A fixed point of T, is given by

P, (r)=1—1.00000733 + 0.9994701 17> — 0.98460124¢°
+0.890113947* —0.63302537¢° + 0.28677896/°
—0.05872908:".

The actual solution is y(z)=1/(¢t+ 1) and the uniform errors are
1P;—yll=82x107°,
[P5— 2" =9.0x 107,
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and

1P5—3"] =1.1x 10",

The last two examples do not satisfy the conditions of the main body of the
paper but are examples of the form (7.7). They do satisfy (7.8) and the con-
ditions which follow (7.8).

ExaMPLE 3.
Y =e 'y re[0,1],
¥0)=1,(1)=e=2.7182818.
A fixed point of the appropriate operator, of degree 7, is
P, (t)=1+0.99999995¢ + 0.49999945+* + 0.166680161°

+0.041590467* + 0.00852119+° + 0.00115943°
+0.00033116¢".

The actual solution is y(¢) =e’. The uniform errors are
|P;—yll=40x10"8,
1P7~y'll=11x 1077,
and
[P5—3"|=11x10~°
EXAMPLE 4.
y'=3y5 1e[0,1],
W0)=4,  y1)=1.
A fixed point of the operator of degree 7 is
P, (1) =4—8.00028350¢ + 11.98571014s> — 15.580065791>
+16.94631392¢* — 13.480518087° + 6.51470248¢°
—1.385859171¢7.

The actual solution is y(t) =4/(z+ 1) The uniform errors are

IP; -yl =20x10"%
1Py —y'|| =24x 1073,
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and
1P5—yp"=29%x 102

Finally, it should be mentioned that none of the above examples satisfy
the conditions imposed in [3] while all of the examples in [3] satisfy the
conditions of this paper.

9. CONCLUSIONS

The objective of this paper was to generalize the results of [3]. This was
done in two ways. First, the second order equation with boundary con-
ditions was expanded to a system of equations with boundary conditions,
which includes single higher order equations. Second, even for second order
equations, the conditions under which the theorems hold have been relaxed
with the help of best restricted range approximations [97]. In both cases the
conditions given by (2.2) and below are needed to insure the existence of a
fixed point. These conditions are more general than those given in [3] and
thus a second order nonlinear boundary value problem satisfying the con-
ditions set forth in [3] will satisfy the corresponding scalar conditions of
(2.2) and below. It is also evident that many other theorems, not covered in
this paper, can be generated by the technique used in composing two
operators and then finding a fixed point of the resultant operator.
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