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This paper develope uniform approximate solutions to systems of nonlinear dif­
ferential equations with boundary conditions using restricted range approximations.
In the process of deriving the approximations an existence theorem is generated for
solutions of nonlinear equations. Also, an algorithm is provided for computing
these approximations. ,jJ 1986 Academic Press. Inc.

1. INTRODUCTION

Consider the boundary value problem

y' = Ey + f(t, y), tE [0, rJ,

My(O) + Ny(r) = b,
(1.1 )

where E, M, and N are constant real n x n matrices such that E" = 0 and
the n x 2n matrix (M, N) has rank n. b is a constant real n x 1 vector and
f(t, y) is continuous on [0, r J x R" with values in R", where R will denote
the set of real numbers. The purpose of this paper is to examine vector
polynomial approximations to a solution of (1.1) with respect to a uniform
type norm. The paper is mainly intended to extend the work of [3J,
although many other papers have recently appeared in closely related
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areas. Among those that most influenced this paper are [2,8 J in linear
boundary value problems and [1, 7J in nonlinear initial value problems.

The uniform type norms to be used are as follows:
For f = (fl J>.·.fn)T, where f E C[O, r J, define

If(t)1 = max Ifi(t)1
l:::;i::>;n

and

Ilfll = max If(fll·
1 E [0. r]

For scalar functions Ilgll=max'E[or]lg(r)I, where gEC[O,r]. Also, if
B(t) = (bij(!)) is an 11 x 11 matrix, whose components are piecewise con­
tinuous on [0, r J, then define

n

IB(tll = max L: Ih il (/)1
1 ~i-;:;;'1Z i= 1

and

IIBII = sup IB(t)I·
IE[O.T]

Throughout this paper we will use the symbol F[yJ(r) to represent
f(t, )'). It will also be assumed that the system

y'=Ey

My(O) + Ny(r) = 0
(1.2)

is incompatible. This implies that there exists a unique Green's matrix
G(!, s) (see [5]) such that the unique solution y to the boundary value
problem

can be written as

x' = Ex + g(t)

Mx(O) + Nx(r) = b

y(!)= Y(t)D-1b+rG(!,s)g(s)ds,
o

(1.3)

where Y( t) is an 11 x 11 matrix whose columns are 11 linearly independent
solutions of y' = Ey such that Y(O) = I, I is the n x 11 identity matrix, and

D=MY(O)+ NY(r),
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It is well known (see [5]) that the system (1.2) is incompatible if and only
if the matrix D is nonsingular.

The ideal situation is to find a sequence {Pk} such that

inf IIp'-Ep-F[p]II=llpk-Epk-F[pdll, (1.4)
pE Pk

where Pk = {p: p = (PI, P2"'" p,,)T, where Pi is a polynomial of degree k or
less and Mp(O)+Np(r)=b}. Iff(t, y)=F[y](t) is linear in y and (Ll) has
a unique solution this sequence can always be found (see [2]). If F[y] is
not linear in y such a sequence may not exist or possibly be very difficult to
compute. We will use a different approach to finding an appropriate
sequence of vector polynomials to approximate a solution of (Ll),
although in some cases the method does produce a vector polynomial
which satisfies (1.4) for a given k. This method will produce a sequence of
polynomials which are fairly easy to compute and provide a good
estimation to a solution of (Ll). The method parallels that used in [3, 7]
for scalar equations.

2. ApPROXIMATING VECTOR POLYNOMIALS

Before developing our sequence of vector polynomials some definitions
must be presented. Let h(t)= Y(t)D-lb. Since E"=O, the components ofh
are polynomials of degree n - 1 or less. Also, h has the property that

h'=Eh

Mh(O) + Nh(r) = b.
(2.1 )

An important restnctlOn on ( Ll ) is that there exists a function
(,6U)EC[O,r], with (,6(t»0 for all tE[O,r], and a positive real number r
such that

rIIG(', s)II(,6(s) ds;(; 1
o

and IF[y](t)1 ;(;(,6(t) r for lIy-hll;(;r and tE [0, r].
Now define the following sets:

Qk = {p: P is a polynomial of degree k or less},

Wk = {p: P= (PI' P2"'" p,,)\ where Pi E Qk for 1;(; i;(; n},

P k = {p: pE Wk and Mp(O) + Np(r) = b},

Vk = {p: pE Qk and Ip(t)1 ;(; (,6(t) r for all IE [0, r]},

Uk = {p: P = (PI' P2"'" p,,)T, where Pi E Vk for 1;(; i;(; n},

(2.2)
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It should be noted that hE Sk for all k ~ n - 1.
We may now proceed to define our sequence of vector polynomials. Let

p E Sk for a fixed k ~ n + 1. Since lip - hll ~ r, it follows that
IF[p](t)I~¢J(t)r. Therefore IFi[P](t)I~¢J(t)r for each l~j~n, where
F[p]=(F,[p], F2[p], ...,Fn [p])T. Then using Theorems 3.1 and 4.1 from
[9], for each 1~i~n, there exists a unique L'iE Vk - n such that

inf Ilv-Fi[p]11 = 11L',-Fi[pJII. (2.3 )

Let va = (v" v2 , ... , Vn)T and define the operator Bk : Sk ----> Uk - n by Bk P = Va'

Since F [y] is uniformly continuous on compact sets, Theorem 4.4 of [9 J
implies that Bk is a continuous operator. For the same fixed k ~ n + 1 let
v E Uk _ n and set

q(t) = h(t) +rG(t, s) vIs) ds.
a

Define the operator H k by H k V = q. Using the properties of the Green's
matrix it can be shown that H k is a continuous operator from Uk-on into
Pk· Finally, define the operator Tk: Sk ----> Pk by TkP = Hk(BkP). Since Tk is
the composition of continuous operators, Tk is continuous. If Pk is a fixed
point of Tko i.e. TkPk = Pko then

Pk = h(t) +( G(t, s) Vk_n(S) ds,

Therefore

inf Ilv-F[pdll = Ilvk-n-F[pdll

and from (2.4)

(2.4 )

(2.5)

(2.6 )

Our approximating polynomials are then the fixed points of T k for each
k~n+ 1.
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3. EXISTENCE OF FIXED POINTS

The first step is to establish the existence of fixed points of Tk for each
k~n+1.

THEOREM 1. For fixed k ~ n + 1 the operator Tk has a fixed point Pk'

Proof To prove this theorem we will use Schauder's Fixed Point
Theorem (see [6]). It is already known that T k is a continuous map from a
compact convex subset Sk of the Banach space Wk into Pkc: Wk' Therefore
we need only show that Tk(Sk) c: Sk'

Let PE Sk' If Va = BkP, where Va = (v\> ... , Vn)T, then Ivi(t)1 ~ ¢J(t) r for all
fE[O,,] and 1~i~n. Therefore IVa(t)I~¢J(f)r for all tE[O,rl Define
q = TkP. Then

q(t) = h(t) +rG(t, s) va(s) ds.
a

This implies that q E Pk and

Iq(t) - h(t)1 ~ I: IIG( " s)11 Iva(s)1 ds

~ rrIIG(', s)II¢J(s) ds
a

for all t E [0, r l Therefore II q - h II ~ r, which completes our proof.

4. CONVERGENCE OF FIXED POINTS

We should now determine a relationship between our sequence of fixed
points of T k and a solution of (1.1). We will prove, under certain con­
ditions, that if Pk is a fixed point of Tk for each k ~ n + 1 then Pk ---+ Y
uniformly as k ---+ UJ, where y is a solution of (1.1). Also p~ ---+ y' uniformly
on [0, r l In order to establish these results we will need the following
lemma:

LEMMA 1. For each k:? n + 1 let Pk E Sk be a fixed point of Tk. Let

ek(t) = p~(f) - Epdt) - F[Pk](t),

then limk~ 00 Ilekll = O.

fE[O,r]; (4.1 )
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Proof Let vk-n = p~ - Epk for each k'); n + 1 arId denote the com­
ponents of vk-n by Vi,k-fl' where 1";; i";; n. Since Pk is a fixed point of T,c we
have that

for each 1 ,,;; i,,;; n.
Further, for each 1 ,,;;i";;n, there exists q;.k-flEQk-n such that

inf Ilv-F;[pdll = Ilq;,k-n-F,[PkJII.
v E Q"-n

(4.2)

(4,3)

From Jackson's theorem (see [4]), if e;.k=qlk-n-F;[PkJ then Ileull";;
W;,k (y./(k - n)), 1,,;; i";; n, k '); n + 1, for some constanty.. independent of k,
where W;,k is the modulus of continuity of F; [Pk] for each i and k.

For each k');n+ 1 we have that Ivk-n(t)1 ,,;;211111r and Ip.dOI ";;r+ llhll
for all tE [0, r]. Therefore Ip~(t)I";; IIEII[r+ IlhllJ +211¢llr for all tE [0, rJ.
Then using the mean value theorem we can conclude that the sequence
{pdk~n+l is uniformly bounded and equicontinuous on [0, rJ

Given s>o such that ¢U)r--f,>O for all tE[D,rJ, set
A=s![2(f,+rll¢II)]. Since each F;[yJ(t) is uniformly continuous on com­
pact sets and the sequence {Pk} is uniformly bounded and equicontinuous
there exist positive numbers ();, 1,,;; i";; n, such that

(4.4 )

whenever It -' 51 < b;, t, 5 E [0, r], for each k ~ n + 1. This implies that
w;,k(b;),,;; P/(l-A)] f,!2, l,,;;i";;n. independent of k. Let Kl~n+l be
large enough so that y./(k-n),,;;min fbi] for k~Kl' Therefore

(4.5)

for each l";;i";;nandk~Kl'

Define g( t) = ¢(t) r - I', and for each k ~ n + 1 let Sk _,,( t) be a polynomial
of degree k - 11 or less such that

inf ..llv-gll = Ilsk-n-gll·
l:E Qk-n

14 .6)

There exists a number K2~n+ 1 such that Ilsk-n-gll <1',/2 for all k~K2'
Let K=max {K j , K2 }.

For each k ~ K and 1 ,,;; i";; n define

Then b ;,k -n E Qk -n for each k ~ K and 1,,;; i";; 11 and

2A(¢(t)r - s) - ¢(t)r < b;,k_Il(t) < ¢J(t)r

640 ~7 1-3
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for all tE[O,r]. This implies that Ibi,k-n(t)I<r/J(t)r for all tE[O,r],
1~ i ~ 11, and k ~ K. Therefore bi,k _nE Vk-n for 1~ i ~ nand k ~ K.

We also have, for t E [0, r], 1~ i ~ 11, and k ~ K, that

Ibi,k-n(t) - Fi[pd(t)1

~ Alsk -n (t) - F i [Pk](l)1 + (1 - .,1,)1 qi,k -n(t) - F i[Pk](t)1

~ Ae/2 + A.[Ir/J(t)r - Fi[Pk](l)1 + e] + (1- .,1,)[.,1,/(1 - A)] e/2

~ Ae + A[2rllr/J11 + e] = 2A(e + rllr/JII) = e.

Therefore, Ilbi,k-n- Fi[Pk] II < e for all k ~ K, 1~ i ~ 11. Since bi,k-n E Vk_n,
k ~ K, 1~ i ~ 11, then

for each 1~i~n and k~K. This implies that Ilvk-n-F[Pk]11 <e for all
k ~ K and the proof is complete.

With Lemma 1 we can now establish the main results of this paper.

THEOREM 2. Ifpk E Sk is a fixed point of Tkfor each k ~ n + 1 then there
exists a function y, whose components are in C1 [0, r], and a subsequence
{Pk(j)L~l of {pdr=n+l such that limj~wll(Pk(j)t)-y(i)11=0, i=O,1.
Moreover y is a solution to (1.1).

Proof In the proof of Lemma 1 it was established that the sequence
{pdr=n+l is equicontinuous and uniformly bounded on [0, r]. By Ascoli's
theorem there is a subsequence {Pk(j) }:~ 1 such that Pk(j) -+ Y uniformly on
[0, r] for some y whose components are in C[O, r]. If
ek= P~ - Epk - F[pd then from Lemma 1 P~(j) -+ Ey + F[y] uniformly on
[0, r] as} -+ 00. Since PkUl is a fixed point of Tk(jl

Pk(j)(t) = h(t) + J: G(t, s)[p~(j)(s) - Epk(j) (s)] ds

and thus y E C1[0, r] is a solution to (1.1). We then get, since
y' = Ey + F[y], that P~(k) -+ y' uniformly on [0, r] as} -+ 00 and our proof
is complete.

5. RATE OF CONVERGENCE

We will now investigate the rate of convergence of a sequence of fixed
points developed in Section 2. Here it will be assumed that we have a
sequence of fixed points {pd and a solution, y, of (1.1). Also, in addition
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to the conditions already placed on f we will assume that there exists a
positive number K such that

(5.1 )

for all t E [0, r] and II h - xJ ~ r, i = 1, 2. In addition let c be a number
such that

rIIG(',s)11 ds~c.
• 0

(5.2)

THEOREM 3. If Kc < 1, then there is a constant p, independent of k, such
that

i = 0, 1,

where ek = P~ - Epk - F [Pk].

Proof. Since y is a solution to (1.1) and Pk is a fixed point of Tk we
have

y(t) = h(t) + rG(t, s) F[yJ(s) ds
o

and

pdt)=h(t)+rG(t, s)[p~(s)-Epk(s)]ds
o

for each k. Here, recall, F[y](t) = f(t, y). Therefore

This implies that

We also have that

Ilp~-y'll ~ Ilekll + [IIEII +K]II pk-YII

~ [( 1+ c II Ell )/(1 - Kc)] II ek I!·

(5.3 )

(5.4 )

This, then, implies our result.
Two consequences of Theorem 3 should be discussed. First, combining

Lemma 1, Theorem 2, and Theorem 3 we get the existence of a solution to
(1.1) and the convergence of the entire sequence {pd of fixed points to
that solution. Second, it can be easily shown that the conditions of
Theorem 3 guarantee that (1.1) has a unique solution.
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6. COMPUTATION OF FIXED POINTS

We now turn to the task of computing a fixed point of Tk • Let Po be any
element of Sk for a fixed k?;n+ 1 (this may be taken to be h). Define
Pm+i = TkPm for m=O, 1,2,.... We know that PmESk for each 111?;0. Since
Sk is compact the sequence {Pm} has a cluster point P E Sk' Therefore,
there exists a subsequence {Pm(j) }j: 1 such that Pm(j) -+ P uniformly on
[0, r J as j -+ 00. We now proceed to show that P is a fixed point of Tk •

Let vm= P~, + i - Epm + i for each 111?; O. Then vm= (v i."" ... , VII .m)T, where

(6.1 )

for 111?; 0, 1:::; i:::; n. It will be assumed that, for each i, F i [pJ is not con­
tained in Qk when P is contained in Wk' This will imply that
Ilvi,m-Fi[PmJII #0 for m?;O, 1 :::;i:::;n. Define the following sets for each
m ?; 0 and 1 :::; i:::; n:

yi:;~ = {t E [0, r]: F i[PmJ(t) - vi,m (t) = IIFi[PmJ - vi,mll },

yi__ml = {t E [0, r]: Fi [PmJ(t) - vi,m(t) = -IIFi [PmJ - vi,mll},

yi,m = ftE [0 rJ' v· (t)= -.J.(t)r}+ 2 l ,. I,m 'P'

Y'~"~= {tE [0, r]: vi.m(t)=,p(t)r}

and

yi,m = yi,1II U yi.1II U yi,m U yi,1II .
P +i -i +2 -2

Since IFi[PmJ(t)I:::;,p(t)r for all tE[O,rJ, 1~i:::;n, and m?;O, we have
that

(6.2)

for each 1 :::; i :::; nand m ?; O. Then define (J i,m (t) = - 1 if t E yi,n~ U Yi':':"2 and
(J i,m (t) = + 1 if t E Yi~1I1 u yi:.-m2 for each 1~ i:::; nand m?; O.

From Theorem 3.2 of [9 J, there exist k - n + 2 consecutive points
t i,i,m < t2,i,m < ... < tk _II + 2,1,111 in y~m satisfying

(6.3 )

for each 1~ i:::; n, m?; 0, and 1:::; I:::; k - n + 2. For each 1~ i:::; nand m?; 0
let Xi,m = {t l,i,m ,..., tk _" + 2,i.m}' The sequence {Xi.m};:;' ~ 0 is contained in the
compact set [0, r y -II + 2 for each 1:::; i:::; n. Therefore they have cluster
points Xi = {t l,i,"" t k _ 'If- 2,i}, 1~ i:::; n. Without loss of generality, assume
that all subsequences from {Pm} and {Xi,lII} that converge to P and Xi'
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1~ i ~ 11, involve the same indices. These subsequences will be denoted by
r '}X d fX }w 1~'~(PmlJl j~l an ( i.m!j) J~l' ,,1,,11.

Let em(t)=vm(t)-F[Pm](t)=P;"+dt)-EPm+dt)-F[Pm](t) for each
m ~ 0. Denote the components of em by ei,m, 1~ i ~ 11. Also define u(t) =
p'(/) - Ep(t) and e(t) = u(t) - F[p](t) with the components of e given bye"
1~ i~n.

THEOREM 4. If for each t,,;, tl+1,iEXi, 1~i~n, 1~l~k-n+ L we
have

(6.4)

then p is a fixed point of Tk .

Proof Define q=TkP, v=q'-Eq and d=v-F[p] with the com­
ponents of d denoted by d" 1~ i ~ n. Also for each 1~ i ~ n define the
following sets:

y i+1= {tE [0, r]: Fi[p](t) - Vi(f) = IIFi[p] - pill}.

Y'_l = {tE [0, r]: Fi[p](t) - vi(t) = -IIFi[p] - Viii},

y i+2= {tE [0, r]: vi(t) = -¢J(t) r},

yi_ 2 = {t E [0, r]: Vi(f) = (p(t) r}

and

Again, we have that

(6.5 )

for each 1~ i ~ n. Then define Gi(t) = -1 if t E Y i_ l U r_ 2 and O'i(t} = + 1 if
t E yi+ 1 U Y'+2' 1~ i ~ n. Using Theorem 4.4 of [9] and the fact that the
family {F[Pm]} is equicontinuous on [0, r] we have that ei,mlJl(tUmC;;)-+
d,(tu )as) -+ 00, for each 1~ I~ k - n + 2 and 1~ i ~ 11. Also, Ile"mlJi ll --> Iidill
for each 1~ i ~ n, as) -+x,. This gives us the following relationships as
j-+ ,x: y,+m1

IJJ -+ y i+1, yi:::~IJI-+ r_ 1 • r:ilJ' -+ yi+ Z' yi:::~j)-+ Yi_ 2 and
yi,mUI -+ yi for each 1~ i ~ n Thereforep p """" -....;:: •

1~l~k-n +2, (6.6)

for each 1~ i ~ n.
We have that for each 1~ i ~ nand 1~! ~ k - n + 2,

(6.7)
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Also, using (6.4) and Theorem 4.2 of [9] we have

1~1~k-n+2, (6.8 )

for each 1~ i ~ n. Then using (6.7) and (6.8) we can conclude that
u, (tI.J - v, (t t,;r~° if tI,' E Y'+ I U Y'+ 2 and u, (tI.J - v, (t I.J ~° if
t l" E Y'_I U Y'-2' 1~ I ~ k - n + 2, 1~ i ~ n. Therefore, from (6.6), it follows
that for each l~i~n, u,(t)-v,(t) has k-n+l zeros in [O,r]. Since u,
and v, are polynomials of degree k - n or less for each 1~ i ~ n, then
u,(t) == vJt) for each 1~ i ~ n. Thus u(t) == v(t), which completes the proof.

It should be noted that if the sequence {Pm}~~o is such that Pm --+ P
uniformly as m --+ CIJ then (6.4) is always satisfied.

7. SCALAR EQUATIONS AND THE BEST ApPROXIMATION

Consider the system

n

L CijyU-I)(O) + dijyU-')(r) = b"
j~1

t E [0, r],

1~ i~n,

(7.1 )

(7.2)

where f is a continuous real valued scalar function on [0, r] x R n and
cij,dij' and b, are real constants for l~i~n, l~j~n. Using standard
techniques this system may be transformed to the form (1.1), where
y = (y, y', ..., y(n - I»)T. Therefore all of the theory of the preceding sections
applies to (7.1) transformed to (1.1). However, additional things may be
said about (7.1).

First, let Ek = {P:PEQk and Lj~1 cijP~6)')+dijp~{)-')=b" 1~i~n}.
Then the best approximation from Ek> for a given k, is a polynomial qk
satisfying

. f II (n)-f(' (n-'»)II_II (n)-f(' (n-'»)IIIn q , q, ..., q - qk , qk>'''' qk .
qEEk

If we modify all of our sets in Section 2 by replacing the vectors
(Pl,P2, ...,Pn)T with (p,p', ...,p(n-I»)T and name the sets Wk> f\, Uk> and
Sk, then finding a polynomial qk which satisfies (7.2) is equivalent to
finding a vector polynomial qk=(qk> qk,""qlcn-1»)T which satisfies

inf Ilq'-Eq-F[q]II=llqk-Eqk-F[qk]ll, (7.3)
qE Pk

where F[y](t) = f(t, y). Then in light of Theorem 4.3 of [9] we can apply
the same type of analysis as that applied in [3] to find a vector polynomial
qk satisfying (7.3). (We would use the fact that ifp= (p,p', ...,p(n-I»)T then
lip' - Ep - F[p] II = IlpCn) - f(-, p, ..., in-'))II·)
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In converting system (7.1) into (1.1) and checking the condition given in
(2.2), we may be losing some examples. Using the method in [3] for
scalars and that of this paper we can include scalar equations that would
have been eliminatpd in the conversion process. Thus condition (2.2) would
become

r[[H(-, s)[I<,b(s) ds ~ 1
o

and

f: [IH,(', s)[[<,b(s) ds~ 1,

etc., where H(t, s) is the Green's function for the problem

(7.4)

(7.5 )

n

L cijylj-l)(O)+dijyU-l)(r)=O,
j~l

1~ i ~ n.

p.6)

This can be found by computing the Green's matrix G(t, s) and then letting
H(t, s) = df G(t, s) dn , where d1 = (1,0,0, ..., O)T and dn = (0, 0,... , 0,1 )T.

Finally, if we simplify the boundary conditions in (7.1) to
y(0)=bt>y(r)=b 2 , there are many other theorems we can prove using the
technique of this paper. One simple problem is as follows: Consider

y"(t)=f(t,y), tE[O,r],

y(O)=bl,y(r)=b~.

(7.7)

Here, our Green's function H( T, s) is nonpositive for all s, t E [0, r]. If we
let h(t)= [(b 2 -bd/r] t+b 1 then our condition would be that there is a
positive function <,b( t) on [0, r] such that

-tT

H(t, s) <,b(s) ds ~ 1 (7.8)

for all t E [0, r]. Also, there exists an r >°such that 0 ~f(t, y) ~ ¢>(t) r
when II Y - h II ~ rand y(t) ~ h(t) for all t E [0, r]. With these conditions we
can follow the procedure of this paper and produce the theorems needed.

8. EXAMPLES

In this section four examples are presented. In each case the algorithm
introduced in Section 6 was used to produce a fixed point. Each of the four
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examples is a scalar system of the form (7.1) with!(t,y, ...,y(n-l))=a(t)ym,
where m is a positive real number and a(t)#O for all tE [0, r]. Also, we
will assume T = 1. In this case the corresponding scalar conditions,
described in Section 7, which will insure the existence of a fixed point
become: There exists a function ¢J E C [0, 1], with ¢J( t) > °for all t E [0, I],
and a real number r such that

( IIH(-,s)II¢J(s)ds~l

and la(t)[y(t)rl~¢J(t)r for Ily-hll~r, tE[O,l]. Here, H(t,s) is the
Green's function described in Section 7. If we let

1
A = ~::-==.,----.,----:-:--:-:-.,...--:-J6 IIH( " s)11 la(s)1 ds

and ¢J(t)=Ala(t)1 then a condition which would insure the existence of a
fixed point is given by: There exists a real number r such that

[r+ Ilhllr ~A.
r

(8.1 )

This condition can be checked numerically on the computor.
In order to calculate these fixed points it was necessary to calculate a

best restricted approximation and thus the algorithm developed by G. D.
Taylor and M. J. Winter [10] was used for this purpose.

EXAMPLE 1.

yUI + 6y 4=0,

y(O)=-L y'(O)= -!,
tE[O,l],

y(l) = f.

Here, IIH(-,s)ll=s(l-S)2/2(2-s), where SE[O, 1]. Thus A=1/(-4+
61n2) and Ilhll =t. Therefore, we can take r=0.0109 in order to satisfy
(8.1). Also, K = 3(2r + 1)3 and C = - i + In 2. This gives us that
KC < 0.085 < 1, which implies that the conditions of Theorem 3 are
satisfied (making the appropriate changes for scalar equations). A fixed
point of T7 is

P7 (t) = 0.5 - O.25t + 0.12532746t2
- 0.06249514t3

+O.03114968t4
- O.01510905t5 + 0.00648877t6

-O.00202841t7
.
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A fixed point of Ts is

Ps (t) = 0.5 - 0.25t + 0.12486999t2
- 0.06249929t3

+0.03123048t4
- 0.01547963t 5 + 0.00733774t6

- 0.00299848t 7 + 0.00087248t 8
.

The actual solution is y(t) = 1/(t + 2) and the uniform errors are

IIP7 - yll = 1.5 x 10 -4,

liP; -y'll = 1.9 x 10- 3
,

IIP~-y"ll = 1.7 x 10- 2
,

II P~' - .1""11 = 1.1 x 10 -I,

liPs - yll = 6.5 x 10 -5,

IIP~-y'll =8.9x 10- 4
,

IIP~ - y"ll = 8.9 x 10 -3,

and

lIPS" - y'''11 = 6.4 x 10- 2
.

EXAMPLE 2.

2 ,
l'''=--r~
- t + I" ,

y(O) = 1,

t E [0, 1],

y(l) =~.

In this case liH(',s)ll=s(l-s), where SE[O, I], and Ilhll=1. Therefore
A = 1/(3 - 4ln 2) and thus any r between 0.537763 and 1.859557 will satisfy
(8.1). However, K=4(1 +r) and C=t" which implies that KC=
~ (l + r) > 1.025. A fixed point of T7 is given by

P7 (t) = 1- 1.00000733t +0.99947011t2
- O.98460124t3

+0.89011394t4
- 0.63302537 t 5 + 0.28677896t6

_ 0.05872908l7.

The actual solution is y(t) = 1/(t + I) and the uniform errors are

IIP7 - yll = 8.2 x 10- 6
,

IIP;-y'll =9.0x 10- 5
,
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IIP~ - y"ll = 1.1 x 10- 3
•

The last two examples do not satisfy the conditions of the main body of the
paper but are examples of the form (7.7). They do satisfy (7.8) and the con­
ditions which follow (7.8).

EXAMPLE 3.

y"=e- ty 2, tE[0,1],

y(O) = 1,y(l) = e = 2.7182818.

A fixed point of the appropriate operator, of degree 7, is

P7 (t) = 1+ 0.99999995t + 0.49999945t2 + 0.16668016t3

+0.04159046t4 +0.00852119t5 + 0.00115943t6

+0.00033116t7
•

The actual solution is y(t) = e1
• The uniform errors are

IIP7 - yll = 4.0 x 10- 8
,

IIP~ - y'll = 1.1 x 10- 7
,

and
IIP~-y"ll = 1.1 x 10- 6

•

EXAMPLE 4.

y(O) =4,

tE[0,1],

y(1) = 1.

A fixed point of the operator of degree 7 is

P 7 (t) = 4 - 8.00028350t + 11.98571014t2
- 15.58006579t3

+ 16.94631392t4 -13.48051808t5 + 6.51470248t6

- 1.38585917t7.

The actual solution is y(t) = 4/(t + 1)2. The uniform errors are

IIP7 - yll = 2.0 x 10-4
,

IIP~ - y'll = 2.4 x 10- 3
,
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liP; - y"ll = 2.9 x 10- 2
.
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Finally, it should be mentioned that none of the above examples satisfy
the conditions imposed in [3] while all of the examples in [3] satisfy the
conditions of this paper.

9. CONCLUSIONS

The objective of this paper was to generalize the results of [3]. This was
done in two ways. First, the second order equation with boundary con­
ditions was expanded to a system of equations with boundary conditions,
which includes single higher order equations. Second, even for second order
equations, the conditions under which the theorems hold have been relaxed
with the help of best restricted range approximations [9]. In both cases the
conditions given by (2.2) and below are needed to insure the existence of a
fixed point. These conditions are more general than those given in [3] and
thus a second order nonlinear boundary value problem satisfying the con­
ditions set forth in [3] will satisfy the corresponding scalar conditions of
(2.2) and below. It is also evident that many other theorems, not covered in
this paper, can be generated by the technique used in composing two
operators and then finding a fixed point of the resultant operator.
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